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Most numerical simulations require techniques for the representation and
manipulation of complex, three-dimensional geometries. This paper provides
a short historical survey and an overview of state-of-the-art geometric model-
ing techniques and research issues, and discusses a few selected applications
of geometric modeling in computational areas. Q 1997 Academic Press

1. INTRODUCTION

This survey paper provides an overview of recent developments in geometric
modeling, also referred to as computer-aided geometric design (CAGD), and selected
applications in computational areas. Before the field of geometric modeling had
become a separate, independent field (around 1970), it was viewed as part of
computational geometry, a field then concerned with all aspects of geometry repre-
sentation in computers [19]. Today, computational geometry is no longer concerned
with geometric modeling techniques (analytically defined shapes) but primarily with
algorithms regarding finite sets of ‘‘simple’’ geometrical objects such as points, lines,
polygons, and polyhedra [42].

Numerical simulations require efficient techniques for manipulating complex,
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three-dimensional (3D) geometries. Numerical simulations are applied to an ever-
growing number of fields: flow around aircraft and cars, ocean currents on a global
scale, the Earth’s atmospheric circulation, electromagnetic fields, robot simulation,
etc. Geometric modeling affects several aspects of the simulation of physical phe-
nomena. Furthermore, geometric modeling is the theoretical foundation of com-
puter-aided design (CAD) and solid modeling systems used, for example, for aircraft
and car body design. Mesh generation methods heavily rely on geometric modeling
techniques for the definition of 3D grids. Geometric modeling is also becoming
increasingly important for the development of visualization algorithms and systems.

This paper summarizes current trends in geometric modeling, emphasizing its
applications in computational sciences. Section 2 provides a historical perspective
and discusses some current research areas, while Section 3 focuses on applications
of geometric modeling.

2. GEOMETRIC MODELING—A HISTORICAL PERSPECTIVE AND
CURRENT RESEARCH ISSUES

2.1. A Brief History of the Field

Where and when was the field of computer-aided curve and surface design con-
ceived? It seems that the answer must point to places in two countries, France and
the United States. In France, P. de Casteljau started work on a curve and surface
design system in 1959 (for Citroen), and a short time later, P. Bézier started work
on his UNISURF system (for Renault). Also, in the early 1960s, J. Ferguson at
Boeing worked on the implementation of cubic splines into a design system, and
S. Coons developed his surface schemes at MIT. The subject was formally named
‘‘Computer Aided Geometric Design,’’ with a start toward a scientific development,
at a conference in Utah in 1974 [2].

While this is not the place to discuss the details of those curve and surface
schemes, it is worthwhile to point out where they differ in their philosophies and
what they have in common.

De Casteljau’s work was not recognized because it was kept confidential by
Citroen for a long time. As was discovered in about 1972, the approaches of Bézier
and de Casteljau are mathematically equivalent. R. Forrest discovered this when
translating Bézier’s book [3] into English. W. Boehm, in Germany, also became
aware of de Casteljau’s work and publicized it in 1978.

Both methods use tensor product polynomials (i.e., rectangular polynomial
patches) to describe a surface. The polynomial degrees were arbitrary, yet had to be
limited to about eight by eight in practice. For more complicated shapes, composite
patches were used, with provisions for first- and second-order continuity between
adjacent patches.

J. Ferguson [18] devised a surface scheme that fits a surface between a network
of C2 cubic spline curves, all having equidistant knot spacing. A ‘‘Ferguson surface’’
is thus an array of bicubic patches, joined together such that first-order continuity
is maintained between adjacent patches. The spline curves from the initial network
were of higher-order continuity than the resulting surface. This was not so out of
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necessity: it was the result of a poor choice of ‘‘twist’’ vectors, i.e., the mixed second
partial derivatives. Ferguson set the corner twists of each bicubic patch to be the
zero vector.

Quite a different type of surface was developed by S. Coons [9]. He solved the
following problem, often encountered in practice: given four boundary curves, find
a rectangular patch that has those curves as its boundaries. The Coons approach
is distinct from the previous ones in that it allows the boundary curves to be of
any form: polynomial, trigonometric, etc. Thus, a Coons patch is far more general
than the polynomial or piecewise polynomial patches described so far. Of course,
if the input curves for a Coons patch are polynomials, then the Coons patch is itself
a polynomial surface.

These Coons patches, also called ‘‘bilinearly blended patches,’’ cannot be pieced
together in order to form a smooth overall surface. One has to use the ‘‘bicubically
blended’’ Coons patch, which will guarantee a C1 overall surface. However, care
must be taken in the correct definition of the twist vectors that are a necessary
input for this surface type. If these twists cannot be defined in a consistent way,
one has to use methods such as ‘‘Gregory’s square’’ [26].

Most of the above schemes were state-of-the-art during the 1960s. The 1970s saw
the advent of B-spline curves and surfaces, introduced into curve and surface design
by W. Gordon and R. Riesenfeld [25]. The theoretical foundations were laid earlier
by Mansfield, de Boor, and Cox [11]. From then on, Bézier methods could be viewed
as a special case of the more general B-spline method. Every piecewise polynomial
curve may be expressed as a B-spline curve. Thus, also local methods (necessary
for local shape modifications) may be expressed in this general framework.

While B-splines had the most impact on applications, other research trends
formed, such as triangular patches or subdivision surfaces.

2.2. Current Research Areas

The inception of the first curve and surface design methods is now some 35 years
back in history. Many new methods have been developed since (and many of them
perished). As a general theme in a significant part of this activity, one may detect
the introduction of more geometric methods into curve and surface design.

The first research on this topic was performed by two people, P. Bézier and S.
Coons. Subsequent research was typically carried out by mathematicians with a
solid background in numerical analysis. Later, researchers with a more geometric
background were attracted into the field, and this trend is continuing. The influence
of geometry grew just as the quality of the available graphics media increased.
While early computer output used to be printouts, we now witness real-time display
of extremely complex objects. As we communicate with computers via computer
graphics, the need for geometric intuition rises. The development of new technology
clearly influences our theoretical approaches.

Let us now discuss some of the methods that are currently being investigated:

Geometric continuity. As is to be expected in any science, once methods are
developed, people try to generalize them. One such generalization was the concept
of ‘‘geometric’’ or ‘‘visual’’ continuity, generalizing the mathematical concepts of
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first- and second-order continuity. Research in this field had started as early as the
late 1960s and early 1970s (by J. Manning 1974 in England and G. M. Nielson 1974
in the U.S.), but it took until the early 1980s for these concepts to gain enough
momentum to qualify as a major research area; see the survey article by Herron
[30]. What is interesting in the context of this survey article is that we see a departure
from purely algebraic methods (using calculus) and a turn towards methods that
are more geometric (using differential geometry).

Algebraic geometry. Another development that emphasizes geometry is the
use of methods from algebraic geometry, first undertaken by T. Sederberg. Many
methods that were ‘‘in’’ in the last century had been more or less forgotten; the
arrival of the new discipline ‘‘curve and surface design’’ caused a revival of many
of them. T. Sederberg’s Ph.D. thesis [45] started this development; see also [31].

In the context of algebraic geometry, surfaces are described in implicit form,
which has the significant advantage in the field of solid modeling that it is easy to
tell whether a given point is inside or outside an object that is in implicit form. For
parametric surfaces, this decision involves heavy computing.

Coons and Gordon surfaces. Bézier and B-spline methods can be classified as
methods that deal with one patch only or with a network of patches at once. The
same generalization was applied to Coons patches: in the late 1960s, W. Gordon
at General Motors developed a method that can be viewed as a way to treat many
Coons patches simultaneously.

Bézier- and Coons-type schemes are the prime candidates to highlight the dichot-
omy between geometry and algebra in the field of curve and surface design: while
the Bézier form emphasizes geometric intuition, the main research on Coons/
Gordon surfaces relied on abstract algebraic concepts such as Boolean sums (al-
though Coons’ original work was in fact soundly based on geometric ideas). In view
of our main theme—increasing emphasis on geometry, decreasing emphasis on
algebra—the following comes as no surprise: up to the early 1970s, Bézier and
Coons surfaces had been given about equal weight in the research literature. B-
spline and Gordon surfaces generalized both schemes in a similar way. Yet Gordon
surfaces never gained the popularity that B-splines did (keep in mind, however,
that Gordon also played a major role in the development of B-spline techniques).
Consequently, not much CAGD research is happening today in the arena of Coons
and Gordon surfaces.

In the FEM field, Coons patches (and their trivariate analogues) are referred to
as transfinite methods. If grid points are supplied along the boundary of an area,
the Coons method is well suited to create more points inside.

NURBS. Bézier and B-spline geometry is (piecewise) polynomial and thus un-
able to represent conics or quadrics exactly. This dilemma was first encountered
at Boeing and is now resolved by the introduction of rational curves and surfaces,
commonly referred to as NURBS (for nonuniform rational B-splines). The initial
research goes back to Coons and Forrest, leading to K. Vesprille’s Ph.D. thesis
[50]. NURBS are a proper ‘‘superset’’ of Bézier and B-spline geometry: their
definition needs a set of weights; if these are all set to unity, they reduce to the
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‘‘standard’’ geometry. Although not all research questions have been settled,
NURBS may not be regarded as a matured field, having led to several IGES
standards and two books [16, 41].

Triangular patches. In his early work, de Casteljau considered patches with a
triangular domain even before he considered rectangular patches. However, today’s
CAD systems utilize surfaces that are almost completely of the rectangular type.
The main reason for this fact can be traced back to the first applications of surface
design methods, outer car panels and airplane fuselages. Those surfaces possess an
intrinsic rectangular structure, and thus early systems were built around rectangular
patches. Later, when more complicated parts had to be modeled, the limitations
of rectangular patches (and rectangular topology) became apparent—but it was
easier to modify existing methods than to integrate completely new schemes. The
same statement holds true for other nonrectangular patch types, so-called n-sided
patches. Work on modeling complex topological structures is quite extensive and
will probably gain more importance in the future.

Triangular patches, in spite of their potential for modeling complex parts, have
not found their way into a significant number of CAD/CAM systems. In the area
of mesh generation, we might see a different trend: most polynomial and rational
polynomial patches have a close relation to finite elements, most notably the
Clough–Tocher element [7, 15]. If we model geometry using (CAGD versions of)
finite elements, should this not facilitate subsequent analysis?

Automatic versus interactive methods. The generalizations of B-spline methods
both toward the rational version thereof and toward geometrically continuous
schemes have one characteristic in common: they provide more degrees of freedom
than a designer can utilize. This sounds positive—more flexible methods are cer-
tainly to be preferred over more rigid ones. However, most of those methods need
interactive user input in order to exploit their full potential. Given that machine
time is steadily becoming cheaper, however, automatic methods are called for.
Automatic methods would also free a designer from making nonintuitive (nongeo-
metric) decisions such as assigning weights to rational B-spline curves.

Research is necessary to provide automatic methods for the ‘‘shape parameters’’
in geometrically continuous schemes and for the weights in rational B-spline
schemes.

Geometry processing. The term geometry processing summarizes all the algo-
rithms that are applied to already existing geometric entities. Examples are surface
intersection, filleting (or rolling-ball blending), and offset algorithms [32]. Little
research has been undertaken in this area, thus giving rise to a multitude of mostly
ad hoc algorithms.

The development of a coherent theory for geometry processing algorithms may
help establish the field of geometric modeling as a scientific discipline in its own
right. For instance, the problem of finding the intersection curve of two parametric
surfaces is equivalent to that of finding the solution of a nonlinear system of three
equations in four unknowns. In principle, numerical analysis has many methods
that should be able to solve this problem—however, they don’t seem to be very



6 FARIN AND HAMANN

efficient. The successful algorithms that have been developed tend to use the known
geometry of the problem, not just its definition as a set of some number of equations
in some number of unknowns (for a collection of relevant articles, see [1]. This
should be viewed as another instance of the growing utility of geometry in this field.

3. SELECTED APPLICATIONS OF GEOMETRIC MODELING

This section focuses on selected computational fields that clearly show the utiliza-
tion and value of geometric modeling in various computational applications. We
have decided to select a few applications rather than simply provide an exhaustive
list of references. Obviously, our choice is subjective and influenced by our own
experience. We believe that our selection highlights some very interesting, im-
portant, and evolving uses of geometric modeling principles.

3.1. Geometric Modeling Techniques for CAD Data Approximation and
Grid Generation

For most applications in CAD, solid modeling, grid generation, and data exchange
between multiple modeling systems, it is imperative that a complex, 3D geometry
is correct in the sense that it does not contain discontinuities, e.g., overlapping
surfaces, ‘‘gaps’’ between surfaces, and surface intersections. Unfortunately, such
continuity problems arise frequently in most industrial applications and require
significant time to be corrected.

We describe an interactive technique that has been developed to correct CAD
data with discontinuities. The described technique was developed for the National
Grid Project, a project conducted at the NSF Engineering Research Center for
Computational Field Simulation at Mississippi State University [43]. The technique
is based on the approximation of a complex geometry, potentially consisting of
thousands of patches with ‘‘undesired’’ discontinuities, by B-spline surfaces. A user
of the technique interactively specifies the boundary curves of ‘‘large’’ B-spline
surfaces which will approximate the given geometry. Eventually, a new, continuous
approximation of the given geometry is obtained that will consist partially of given
surface patches and partially of B-spline approximations covering possible surface
discontinuities. This B-spline approximation can then be used for data exchange,
grid generation, etc.

The approximation technique is based on the constructing of local surface approx-
imations—bilinearly blended Coons patches—which are defined by specifying the
four boundary curves. These Coons patches are then discretized by N 3 N points
which are projected onto the given geometry. The projections are interpolated,
yielding the local surface approximations, bicubic B-spline surfaces. Overall, the
computation of a single B-spline surface approximation consists of these three
major steps:

(i) Projection of N 3 N points of a local Coons patch approximation onto the
given surfaces.

(ii) Estimation of point projections whenever certain points of the Coons patch
cannot be projected onto the given surfaces:
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When performing (i), a projection might or might not be found for a particular point on the Coons
patch. If one or more projections are found on the given surfaces within a small distance to the
Coons patch, the one closest to the Coons patch is selected. If no projection is found, a projection
estimate is computed by applying a scattered data interpolation scheme to known projections that
could be found in a close neighborhood.

(iii) Interpolation of the projections and estimated projections resulting from
(i) to (ii) using bicubic B-spline surfaces.

The points xi, j , i, j 5 1, ..., N, on a Coons patch are projected onto the given
surfaces in normal direction ni, j . Line segments li, j are constructed passing through
xi, j with direction ni, j . Their intersections with the given surfaces define the ‘‘discrete
projection’’ of the Coons patch. Projections must be estimated for all line segments
without intersection with the given surfaces. Each projection point pi, j that can be
found on the original surfaces is a linear combination of the end points ai, j and bi, j

of li, j , i.e., pi, j 5 (1 2 ti, j)ai, j 1 ti, j 1 ti, jbi, j . Thus, projection estimates for all line
segments without intersection can be obtained by approximating t values using a
scattered data interpolation method. Hardy’s reciprocal multiquadric method is
used for this purpose [22]. The equation system to be solved is given by

ti, j 5 O
I,J[h1,...,Nj

cI,J((uI,J 2 ui, j)2 1 (vI,J 2 vi, j)2 1 R)20.5,

(1)
i, j [ h1, ..., Nj,

where all ti, j values and parameter tuples (ui, j , vi, j) (associated with xi, j) are consid-
ered for which a projection can be found. The value of R . 0 is chosen according
to the point distribution on the Coons patch.

An error estimate can be computed for each local B-spline approximation. Origi-
nal curves, e.g., surface boundary curves or trimming curves, can be preserved by
this method. This application is a great example where various geometric modeling
techniques are utilized for the solution of a very important and very common
computational problem. The approximation technique is described in detail in [28,
33]. The geometric modeling methods required for this technique can be found in
[17, 32]. Figure 1 shows an example: the original CAD data of a car body geometry
with ‘‘holes’’ (upper two images) and its continuous approximation (lower two
images).

Grid generation is concerned with the discretization of 3D geometries and some
finite space surrounding them—a necessary preprocessing step for all numerical
simulations of complex physics phenomena. In the context of flow simulation around
an aircraft, for example, one is concerned with the generation of surface meshes
and volume meshes for all surface patches and all so-called blocks, which are used
to represent the regions of interest around the aircraft [23, 37, 49]. Transfinite
interpolation (TFI) is one of the most common and powerful methods used in this
context. TFI has its origins in geometric modeling, where it was originally used for
the construction of surfaces from a set of boundary curves [8]. TFI was later
generalized for the construction of higher-dimensional manifolds, e.g., 3D, hexahe-
dral solids defined in terms of their six boundary surfaces [24]. Most grid generation
systems use TFI for the computation of initial meshes of surface patches and blocks.
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FIG. 1. Car body with ‘‘holes’’ (top) and its approximation (bottom) (courtesy of B. A. Jean and
B. Hamann).

These initial meshes must usually be ‘‘smoothed’’ further for the grids to satisfy
certain distribution and grid line smoothness conditions.

For pure geometric modeling applications, TFI is most often used for blending
the boundary curves of a surface, thus defining the surface’s interior; e.g., considering
the four parametric curves c0(u), c1(u), d0(v), and d1(v)(c0(0) 5 d0(0), c0(1) 5 d1(0),
c1(0) 5 d0(1), and c1(1) 5 d1(1)), defined for u, v [ [0, 1], a four-sided surface can
be defined by applying linear blending functions to the boundary curves (Farin,
1997). The resulting surface is

s(u, v) 5 (1 2 u)d0(v) 1 ud1(v) 1 (1 2 v)c0(u) 1 vc1(u)

2 ((1 2 u)((1 2 v)c0(0) 1 vc1(0)) (2)

1 u((1 2 v)c0(1) 1 vc1(1))).

Higher-order blending functions must be used when concerned with derivative
continuity across surface patch boundaries. The TFI paradigm is used to define and
discretize the interior of blocks from their boundary faces. TFI is a prominent
example for a geometric modeling technique that has directly affected the computa-
tional sciences, in this case numerical grid generation.

3.2. Alpha Shapes—A Promising Development in Computational Geometry

Recent developments in computational geometry indicate that various methods
from this discipline of ‘‘discrete geometry’’ will have strong implications for the
computational sciences. One interesting concept is the use of alpha shapes for the
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FIG. 2. Various alpha shapes of a digitized telephone; alpha decreasing from top to bottom and
left to right (courtesy of H. Edelsbrunner and E. P. Mücke).

approximation of shapes in 3D (or even higher dimensions) derived purely from
finite sets of scattered, unorganized points [14]. Unstructured, tetrahedral grid
generation methods have, in the past, used techniques from computational geometry
quite heavily, including the Delaunay triangulation [54]. Alpha shapes have the
potential to particularly impact next-generation, automatic grid generation tech-
niques.

Alpha shapes can be viewed as a generalization of the Delaunay triangulation.
Ignoring certain degenerate cases, the Delaunay triangulation of a point set in three
dimensions is characterized by the fact that the sphere passing through the four
vertices of any tetrahedron does not contain any other point but the four vertices.
The Delaunay triangulation defines a ‘‘complex’’ of edges, triangles, and tetrahedra.
Given a specific alpha value, an edge in this ‘‘complex’’ belongs to the alpha shape
if the radius of the smallest sphere passing through the edge’s end points is smaller
than alpha. Similarly, a triangle (tetrahedron) in the ‘‘complex’’ belongs to the
alpha shape if the radius of the smallest sphere passing through the triangle’s
(tetrahedron’s) vertices is smaller than alpha. The Delaunay triangulation itself has
an associated alpha value of infinity and gradually decreasing the alpha value toward
zero leads to structures consisting of increasingly ‘‘isolated subcomplexes,’’ e.g.,
strings of edges, chains of triangles, groups of connected tetrahedra, and isolated
points. Figure 2 shows a sequence of alpha shapes of a digitized telephone.

Emerging applications for alpha shapes are automatic mesh generation, cluster
identification in 3D (or higher-dimensional) point sets, modeling complex molecular
structures, and understanding the distribution of galaxies.

3.3. Multiresolution Methods for Computer Graphics and Visualization

Scientific visualization is the area in computer graphics dealing with the rendering
of scientific data, e.g., medical data, fluid flow data, and material properties. The
data sets to be studied are extremely large, often consisting of several million data
points. Scientific data sets are generally not visualized directly, but one extracts
meaningful, simple geometrical data sets (e.g., isosurfaces) that are rendered using
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FIG. 3. Rendering MRI data set using 2,048, 8,192, and 32,768 wavelet basis functions (courtesy of
S. Muraki).

standard computer graphics techniques. Essential visualization techniques and im-
portant research issues in scientific visualization are discussed in [27, 36, 40, 44].

Hierarchical geometric modeling techniques have been used for quite some time
for the representation of curves and surfaces at various levels of detail [20, 21].
Recently, various wavelet and multiresolution methods have been developed that
seem to be very promising in the context of compressing very large 3D scientific
data sets as well as extracted 3D geometrical data [5, 10]. We will briefly outline
two methods: a wavelet-based technique for the compression of volumetric data
sets and a multiresolution method for very large surface triangulations.

First, let us consider a univariate, piecewise constant function f (x) 5 fi ⇔ x [

[i/2N, (i 1 1)/2N), i 5 0, 1, 2, ..., 2N 2 1, defined over the interval [0, 1). This
function can, on the coarsest level, be approximated by the single constant function
a(x) 5 1/2N o2N

i50 fi , which is the average of f (x). One can now compute the error
function e(x) 5 f (x) 2 a(x) and approximate e(x) in the same way, by two constant
functions, one over the interval [0, 1/2) and the other one over [1/2, 1). This process
is applied recursively, and it is terminated when all error functions are zero. This
is the fundamental idea of all dyadic multiresolution methods. An overview of these
methods, from a computer graphics point of view, is given in [47, 48].

Little work has been done in the area of applying the multiresolution paradigm
to 3D, volumetric data sets—which is the most obvious application in the context
of scientific visualization. The method described in [39] compresses 3D, volumetric
scientific data given on rectilinear grids and applies the univariate wavelet paradigm
to the 3D tensor product case. Few coefficients are required to describe regions
characterized by constant or linearly varying phenomena, whereas many coefficients
are necessary to capture detail in regions characterized by rapidly changing function
values. This method has been successfully applied to volumetric data. Figure 3
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shows an MRI (magnetic resonance imaging) data set rendered using an increasing
number of wavelet functions (top, extracted isosurfaces; bottom, Gouraud-shaded
cross sections).

Unfortunately, this approach does not apply to data on tetrahedral grids. Research
in this direction—multi-resolution methods for tetrahedral grids—will most likely
become an important research area. Some initial steps have been done in this regard
by developing mesh decimation strategies for tetrahedral grids [29] and progressively
refined volume triangulations [6].

Another related issue is the application of compression techniques to very large
surface triangulations, which arise in nearly all surface-based visualization applica-
tions. Examples include the compression of multiple isosurfaces and the compression
of multiple stream surfaces extracted from very large scalar or fluid flow data sets
and represented by triangular meshes. Research has recently been done in the area
of multiresolution methods for very general surface triangulations. A multiresolu-
tion method for a surface triangulation that is homeomorphic to a sphere is discussed
in [38]. Related work and extensions are presented in [12, 13].

The underlying two basic principles of these methods are (i) the construction of
a subdivision scheme for some initial, coarse surface triangulation (base mesh), e.g.,
splitting each triangle into four subtriangles, and (ii) the definition of wavelet(-like)
basis functions for the various levels in the hierarchical mesh representation. A
simple approach for modeling a surface homeomorphic to a sphere, for example,
would be to initially approximate it by a polyhedron homeomorphic to an octahe-
dron and recursively subdivide each triangular face into four subtriangles which
more closely approximate the given shape. The computation of the coordinates of
the new vertices resulting from subdivision is essentially determined by numerically
approximating integrals of local wavelet functions and the difference between the
given surface and its approximation by the previous-level triangular mesh.

The method in [38] considers only triangular meshes with subdivision connectivity,
i.e., meshes that are obtained by recursively splitting a triangle into four subtriangles
by splitting the edges (1-to-4 splits). In practice, one must construct hierarchical
representations for very large triangulations that cannot directly be viewed as the
result of some recursive subdivision process uing 1-to-4 splits. The method presented
in [13] ‘‘groups’’ triangles in a certain neighborhood of an arbitrary, large triangula-
tion to form tiles consisting of certain triangles. These tiles define a Delaunay-like
tesselation of the given set of triangles. The dual of this tesselation, some coarse
triangulation obtained by connecting ‘‘center vertices’’ in neighboring tiles, is ho-
meomorphic to the given, large triangulation and is used as the input to Lounsbery’s
original algorithm. Lounsbery’s algorithm then produces finer triangulation levels
approximating the given triangulation better and better. Figure 4 shows a geometry
with three holes. The tiling of the given triangulation, the Delaunay-like triangula-
tion (coarse base mesh), and two finer refinement levels are shown (from left
to right).

With scientific data sets increasing rapidly in size, there is a need to investigate
multiresolution strategies for 3D, time-varying data sets for all kinds of underlying
grid topologies, including tetrahedral, hexahedral, and hybrid grids. For multiresolu-
tion visualization to become really powerful it is essential that efficient rendering



12 FARIN AND HAMANN

FIG. 4. Tiles on initial triangulation, base mesh, and two refined meshes (courtesy of M. Eck,
A. D. DeRose, T. Duchamp, H. Hoppe, J. M. Lounsbery, and W. Stuetzle).

paradigms can be invented for very general volumetric multiresolution schemes
considering all possible grid types, e.g., hierarchical ‘‘tetrahedrizations’’; see the
discussion of research issues in [44].

3.4. Motion Planning—Geometric Modeling for Robotics Applications

Another application of geometric modeling is motion design in the context of
robot kinematics. Other areas that will most likely benefit from new motion design
methods include animation (computer graphics), scientific visualization, and the
animation of mechanical systems. We outline a path planning algorithm based on
rational splines for robot motion control as described in [34, 35, 51, 52]. Rational
motions are motions with only rational point trajectories. Mathematically, a rational
motion can be described by a 4 3 4 matrix whose elements are polynomials. By
converting the matrix representation to B-spline representation one obtains a ratio-
nal motion. It is completely defined by the set of constant coefficient matrices,
which can be visualized by so-called affine control positions of the moving object.

The main advantage of this approach is that each point trajectory can easily be
described as a NURBS curve once the ‘‘control matrices’’ are known. The control
points are the control positions of the moving point. More generally, any NURBS
curve sweeps out a tensor product NURBS surface whose control point net is
formed by the control positions of all control points of the moving curve. This
property has previously been applied to the construction of sweep surfaces. This
technique can also be used for the construction of certain motions which interpolate
a given point trajectory such as a NURBS curve. One can also force the moving
object to remain fixed with respect to the Frenet–Serret motion of the given
curve [53].

NURBS curves allow the specification of weights for each control position. If all
weights are positive, the motion satisfies the convex hull property with respect to
its control positions. In other words, the area that is traced out by a moving object
will lie inside the convex hull of its control positions. Therefore, when subdividing
the motion into two or more segments, the union of the convex hulls has to converge
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FIG. 5. Control positions, motion, and traced area using different refinement levels (courtesy of
M. G. Wagner).

to the traced area. This property is very helpful for collision detection. If not all
weights are positive, one can exchange the ‘‘traditional’’ convex hull property by
its projective analog [35, 51]. Figure 5 shows a rational motion.

4. CONCLUSIONS

We have pointed out some recent, significant developments in geometric modeling
and a few, selected applications of geometric modeling in computational sciences.
May this survey help to foster the interdisciplinary nature of geometric modeling
and increase the dialogue between computational scientists and experts in geomet-
ric modeling.
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